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Abstract

Biodiversity conservation is a required co-benefit of REDD+. Biodiversity monitoring is

therefore needed, yet in most areas it will be constrained by limitations in the available

human professional and financial resources. REDD+ programs that use forest plots for bio-

mass monitoring may be able to take advantage of the same data for detecting changes in

the tree diversity, using the richness and abundance of canopy trees as a proxy for biodiver-

sity. If local community members are already assessing the above-ground biomass in a

representative network of forest vegetation plots, it may require minimal further effort to col-

lect data on the diversity of trees. We compare community members and trained scientists’

data on tree diversity in permanent vegetation plots in montane forest in Yunnan, China.

We show that local community members here can collect tree diversity data of comparable

quality to trained botanists, at one third the cost. Without access to herbaria, identification

guides or the Internet, community members could provide the ethno-taxonomical names

for 95% of 1071 trees in 60 vegetation plots. Moreover, we show that the community-led

survey spent 89% of the expenses at village level as opposed to 23% of funds in the moni-

toring by botanists. In participatory REDD+ programs in areas where community members

demonstrate great knowledge of forest trees, community-based collection of tree diversity

data can be a cost-effective approach for obtaining tree diversity information.

Introduction

Biologists working in the tropics and elsewhere have always relied on local people for guidance.
Indigenous and local communities possess knowledge about the landscape they inhabit [1]. In
tropical forests, indigenous cultures sometimes have meticulous classification systems to dis-
tinguish between vegetation types on the landscape [2–8].
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While individual human societiesmay differ considerably in their conceptualization of
plants and animals, folk biological classification systems share a number of strikingly similar
structural principles [9,10]. All languages seem to have linguistically recognised groupings of
organisms (or taxa) of varying degree of inclusiveness, and all languages seem to group the taxa
into hierarchical categories. Moreover, taxa assigned to each rank are usually mutually exclu-
sive, and folk biology taxa are about as inclusive as the scientific genera [11].

Few studies have investigated the salience of folk classification of vegetation and plants.
From our review, field data on plant species collected by community members and those col-
lected by botanists were compared in only five studies (summary in Table 1). While scientific
plant names are designed to prevent the same name from being used for different species, such
rules do not apply to vernacular names [12]. Local people often split taxa of great cultural sig-
nificance into many ethnoforms while species that are less important or less distinctive are
often lumped into one single ethnoform with a common name [13,14]. Local names are often
based on different criteria from those of scientific taxonomy, such as use or spiritual status
[12]. Vernacular names cannot thus be equated consistently to particular scientific names [12].
Nevertheless, some vernacular names do show a one-to-one correspondencewith scientific
taxa. For example, Jinxiu et al. [15] found a high correlation between folk and scientific plant
species among the Dai people of Xishuangbanna, China (Table 1). Likewise, Cardoso et al. [16]
found the classification criteria used for fungi by several Brazilian indigenous groups to be sim-
ilar to those used in classical, morphology-basedscientific studies.

Deforestation and forest degradation in the tropics are responsible for approximately 20%
of anthropogenic carbon emissions [17] and compromise both livelihoods and biodiversity. In
response, the United Nations Framework Convention on Climate Change (UNFCCC) has
agreed to establish an international framework that will provide developing countries with
financial incentives to reduce emissions from deforestation and forest degradation.While the
primary purpose of this framework, known as REDD+ (Reducing Emissions from Deforesta-
tion and Forest Degradation), is climate change mitigation, it may have enormous co-benefits
for biodiversity because tropical forests are exceptionally rich in exclusive biodiversity reser-
voirs [18]. However, REDD+may have a negative influence on biodiversity when low-carbon,
high-biodiversity forests are replaced with high-carbon, low-biodiversity forests (e.g. tree plan-
tations), or when the protection of high-carbon forest in one area leads to the displacement of
other high-biodiversity forests [19, 20]. Biodiversity monitoring is therefore needed [21–23].

A key obstacle in accounting for biodiversity is a lack of consensus as to what to monitor
[24] because there is, so far, no single, agreedmetric of biodiversity, unlike carbon (Mg ha-1 of
carbon).While biomass estimates are often based on number of trees per hectare and their
diameter at breast height (DBH), monitoring of biodiversity requires understanding parame-
ters such as species richness, composition, abundance and the distribution of many taxa, which
is a tall order given the widespread lack of human and financial resources [25]. One approach
to minimizing the risk of overburdening REDD+ programs is to deploy a limited set of ‘indica-
tor’ taxa [26]. The use of indicator taxa in biodiversity monitoring for REDD+ needs to satisfy
the following four requirements: low monitoring costs, ease of identification, surrogates of eco-
system integrity, and cross-taxon congruency, see below [26].

Tree assemblage, i.e. a community of canopy-tree species including species richness and
abundance as attributes, has been suggested as a suitable indicator. Firstly, the sampling of
trees is relatively easy and inexpensive [27]. REDD+ remote sensing relies on tree density and
DBH to ground-truth satellite images. Tree density data will thus be collected irrespective of
how biodiversity safeguards are monitored. Secondly, unlikemost other organisms, tree taxon-
omy is relatively well described.Thirdly, tree assemblages have a high cross-taxon congruency,
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Table 1. Previous scientific studies comparing community members’ classification of vegetation and identification of plant species to those of

scientists.

Scale Authors Vegetation

type and

country

Villages,

ethnic groups

(number) or

area (ha)

Methods Characteristics of

community monitors

Statistics

employed*
Attribute Result of comparison

between local

community member

and trained scientist

surveys

Vegetation

type

Hellier

et al. 1999

[58]]

Pine—oak

forest.Mexico

2 villages, 2

ethnic groups

Interviews 57 persons incl. 10

women and 47 men

No Forest cover

and harvested

species

Some contradiction on

vegetation change

Vegetation

type

Naidoo &

Hill 2006

[59]

Atlantic

forest.

Paraguay

64.000 ha Field

survey and

satellite

images

Some community

members were

employed as park

rangers. No numbers

were available

Yes Vegetation

classes

Vegetation classified by

community members

similar to scientist-led,

locally supervised

classification of satellite

images

Vegetation

type

Chalmers

& Fabricius

2007 [60]

Grassland,

woodland,

and forest.

South Africa

1660 ha Interviews 51 persons. 11 were

recognised as local

experts by the local

community; 40 were

randomly selected

No Forest and

woodland

cover change

Local ‘experts’

assessment

corresponded with

scientists. Randomly

selected community

members had shallower

knowledge

Vegetation

type

Halme &

Bodmer

2007 [61]

Tropical

rainforest.

Peru

1 village Interviews 26 shifting cultivators,

fishers and hunters.

Used to collaborate w.

scientists

Yes Forest types Close correspondence

between forest type

classification by

communities and

floristic classification by

botanists (Pteridophytes

used as indicator taxon)

Vegetation

type

Vergara-

Asenjo

et al. 2015

[62]

Tropical

rainforest.

Panama

3 villages Workshop

and

interviews

95 indigenous

technicians trained in

forest mensuration

Yes Ten land-cover

classes

Digital processing of

RapidEye imagery

compared to

participatory land-cover

map. In forested areas,

accuracy of

participatory

classification was

significantly better than

classification based on

digital image processing

Plant

species

Wilkie &

Saridan

1999 [12]

Tropical

rainforest.

Indonesia

1 ethnic

group.1 ha

Field

survey

2 shifting cultivators,

46 and 66 years old

men. One had worked

in a logging company

No Species

identification

Trees�10 cm

dbh

Vernacular names could

not be equated

consistently to taxa

identified by scientists

Plant

species

Jinxiu et al

2004 [15]

Tropical

rainforest.

China

1 ethnic

group. 1600

ha

Field

survey

6 Dai villagers, about

40 years old

No Plant species

identification

High correspondence

between folk and

scientific plant species

identification

Plant

species

Lacerda

et al. 2010

[14]

Tropical

rainforest.

Brazil

1 ethnic

group. 546 ha

Field

survey

NA No Species

identification

Trees >45 cm

dbh

Local people’s

identifications matched

those of scientists.

Conversely, matching of

vernacular names to

scientific names using a

pre-existing, non-

specific list, used by

timber companies was

severely deficient

(Continued )
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in which tree species richness and composition are correlated with those of other taxa [28, 29],
probably because trees provide other taxa with resources and habitats.

Imai et al. [25] state that, for trees, the availability of local experts is relatively adequate com-
pared with other taxa. While this may be true for some parts of the world, the enormous chal-
lenge of flora projects in lower-income countries, where the most diverse terrestrial ecosystems
are found [30], is exacerbated by the short supply of taxonomic experts available [31–33].
Researchers have pointed to the vast number of indigenous and local botanical experts, repre-
senting a potentially valuable, yet largely unrecognised and untapped, resource [33–36]. The
participation of ‘parataxonomists’, defined as resident, field-based, biodiversity inventory spe-
cialists with no formal training [37], has been shown to enhance biodiversity inventories for
both arthropods [35,37–39], fungi [16,40], and plants [15,41,42].

UNFCCC texts and guidance documents on the technical aspects of REDD+ outline explicit
roles for indigenous people and local communities in implementing REDD+ [[43–46]. Yet little
has been published on how community-based REDD+ should be implemented in practice,
including community-level monitoring of carbon, livelihoods or biodiversity [47,48]. The
degree of local participationmay vary from virtually no local involvement to an entirely local
effort, with data collection, interpretation and reporting undertaken by local people [49]. Stud-
ies suggest that locally-basedmonitoring may be advantageous in terms of lower costs [50],
enhanced local ownership, greater cultural relevance and improved institutional strength at the
community level [51–53]. Moreover, local people’s participation in monitoring can potentially
enhance decision-making at the operational level of forest management [54,55]. Community
monitoring of forest carbon and tree biodiversity may therefore contribute to a fair and equita-
ble REDD+ [47].

One of the functions of the newly-established Intergovernmental Science-Policy Platform
on Biodiversity and Ecosystem Services (IPBES) is to bring different knowledge systems,
including indigenous and local knowledge systems, to the science–policy interface [56]. One
key challenge lies in how to use information generated by different knowledge systems within
synthetic assessments at the science-policy interface [57]. It is therefore important to under-
stand how folk biological classification systems connect or otherwisewith scientific classifica-
tion systems.

Table 1. (Continued)

Scale Authors Vegetation

type and

country

Villages,

ethnic groups

(number) or

area (ha)

Methods Characteristics of

community monitors

Statistics

employed*
Attribute Result of comparison

between local

community member

and trained scientist

surveys

Plant

species

Oldekop

et al. 2011

[63]

Tropical

rainforest.

Ecuador

2 ethnic

groups. 0.05

ha

Field

survey

20 persons, 18–55

years old, from 9

indigenous and settler

communities. All had

received visual guides

or hands-on training

Yes Species

richness of

ferns

Strong correlation of

species richness

estimates between the

community members

and the scientists

Plant

species

Theilade

et al. 2015

[64]

Tropical

rainforest.

Indonesia

1 ethnic group Field

survey

11 Dayak men, 20–30

years old; 6 of them

had worked in logging

companies

Yes Species

identification.

Trees >10 cm

dbh

Vernacular names could

not be equated

consistently to taxa

identified by scientists

*) Statistics used to compare community member and scientist-executed classification or identification.

NA = No information available.

doi:10.1371/journal.pone.0152061.t001
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Here, we explore one aspect of folk biological classification systems of particular relevance
to REDD+: we compare local community-collected data on canopy trees in forest vegetation
plots with that collected by trained botanists, using the botanists’ findings as a benchmark. In
addition, we compare the costs of trained botanists’ and community monitors’ identification of
tree species.

Methods

Ethics Statement

This research did not involve human or other animal subjects. For plant collections, we col-
lected the minimum number of specimens required to appropriately voucher field identifica-
tions. The field studies did not involve endangered or protected species.

Permission to conduct research in Manlin was obtained through a bilateral agreement
betweenKunming Institute of Botany (Chinese Academy of Sciences) and the Forestry Bureau
of Xishuangbanna Autonomous Prefecture at the regular meeting between these parties. Free,
prior and informed consent was obtained for all community monitors participating in the
study.

Literature Search

We reviewed previous studies that have compared scientist and local knowledge on vegetation
or species level by searching the databasesWeb of Science, PubMed, CABI, AGRICOLA and
AGRIS using the following keywords: participatorymonitoring, local monitoring, community
monitoring, parataxonomist, local ecological knowledge, traditional ecological knowledge, and
indigenous knowledge.

Study Site and Data Collectors

The study site was chosen opportunistically. The criteria were that the site was appointed by
the government as a potential REDD+ site, and that local communities used the forest area.
The study area was the forest near Man Lin village, located at 1180 m.a.s.l. (above sea level) in
Xiangming township of Xishuangbanna autonomous prefecture, Yunnan province. The cli-
mate is monsoonal with an average annual temperature of 25° C and an average annual precip-
itation of 1700 mm. Slope inclinations range between 30° and 70°, and in some areas attain up
to 90°. The vegetation is tropical mountain rainforest at around 900–1400 m.a.s.l. The forest
area surveyed covered 761 ha and is characterised by Castanopsis mekongensis and Schima
wallichii. The canopy can be divided into 3 layers: the overstory reaches 35 m in height and is
dominated by emergent trees such as Pometia pinnata; the midstory reaches 25 m and is domi-
nated by Castanopsis spp., and Schima wallichii while the understory contains a multitude of
species, such as Cratoxylon cochinchinensis, Phoebe puwenensis,Machilus spp., Lithocarpus
spp. Elaeocarpus spp.Mallotus spp. Shrub and herbaceous layers at the edges and inside forest
areas are rich in species. Community members and scientists both measured two forest strata
(homogenous forest areas in terms of structure and composition). The stratum closer to the vil-
lage (291 ha) is classified as collective forest. It is moderately disturbed forest and consists of
abandoned shifting cultivation fields and ancient tea trees with an overstory of natural forest.
The second stratum (470 ha) is classified as state forest and consists mainly of natural old-
growth forest on steep to very steep slopes. Few trees were being extracted 40–60 years ago.
Shifting cultivation was practised in small plots on more gradual slopes from the 1950s to
the1990s and then gradually abandoned. The forest recovered and is in a good condition with a
profusion of lianas and epiphytes. Tea seedlings are planted in the collective forest and
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dominate the understory in smaller areas. Firewood to dry the tea leaves as well as timber for
house construction and furniture are harvested from nearby private forests. The rural Yi com-
munity is connected by road and most villagers are employed in newly-established rubber
plantations.

Data were collected from permanent vegetation plots. Plots were surveyed by botanists in
July 2012 and community members in March 2013. Representatives of the local Yi community
selected three community participants for tree species identification, based on their interest in
and experience of forest resources. These community monitors are thus probably more skilled
than the average villager. All community monitors were male, reflecting the fact that men visit
the forest more frequently than women, often for hunting and collecting of non-timber forest
products (NTFPs). Women do not venture into steeply-sloped forest areas distant from the vil-
lage. All community monitors had attended primary school, which is the usual length of
schooling in the village. The community monitors received 1–2 days’ training from an interme-
diate organisation (research institution) on how to establish plots and measure tree girth, as
required for assessing the above-ground biomass. The community identification of trees relied
solely on existing local ecological knowledge. The botanical team consisted of the late J.F. Max-
well, botanist and curator at ChiangMai Herbarium (CMU), who had more than 40 years’
experience of floristic work in Indochina, and PhD fellowMingxu Zhao from Kunming Insti-
tute of Botany (KIB).

Methods for Measuring Forest Tree Diversity and Costs

The community monitors and the staff of the intermediate organisation divided the forest into
two homogenous strata in terms of tree species composition and level of degradation, using the
available knowledge of the forest and its history (i.e. previous logging or shifting cultivation).
Based on this pre-analysis, staff of the intermediate organisation randomly placed 30 circular
plots in each stratum making a total of 60 plots. The community monitors and professional
botanists then independently carried out forest inventories in each plot. All trees with a girth
of� 30 cm (as a proxy for DBH� 10 cm) were identifiedwithin a radius of 9 m from the plot
centre and all trees with a girth of� 100 cm (proxy for DBH� 30 cm) were identifiedwithin a
radius of 15 m from the plot centre. Local names and scientific names were recorded by pencil
on pre-printed paper forms. The community monitors worked as a team and discussed identi-
fications internally but not with the botanists. Botanists were allowed to ask local guides about
flower and fruit characteristics and phenology as some trees were not in flower/fruit at the time
of the survey. Specimens were collected for herbaria work by the botanists. Botanists used Flora
of Thailand [65], Flora of Yunnan [66], and Flora of China [67] plus herbariummaterial at
Xishuangbanna Botanic Garden (XTBG), Kunming Institute of Botany (KIB) and ChiangMai
(CMU). Voucher specimens were deposited at both CMU and KIB.

We estimated the costs of community-based and professionally-executed identifications on
the basis of the actual expenses incurred for local transport and during the training and field-
work [47,50]. The cost of tree species identification was accounted for separately from other
research activities. The chief botanist’s airfare from Thailand to China was not included.We
calculated the number of genera and species identified by both community monitors and
botanists.

Results

Tree Identification by Botanists and Community Monitors

In total, 1071 trees were recorded by both the botanists and the community monitors (S1 File).
We first examined how many taxa and morphospecies (species distinguished from others only
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by their morphology) the botanists could identify. We found that, of the 1071 trees, the bota-
nists were able to identify 1052 trees belonging to 50 families, 104 genera, and 142 species. In
addition, the botanists recognised 19 morphospecies (1 identified to family level, 7 to genus
level and 11 unidentified).Of the 161 recognised taxa, the botanists named 149 to genus level
and 142 to species level.

We found no significant difference between the number of trees in the plot network identi-
fied to at least genus level by botanists (99.3%; n = 1071 trees) and community monitors
(94.7%; n = 1071 trees). The community monitors were able to name 1013 trees belonging to
42 families, 90 genera, and 111 species that showed a one-to-one correspondencewith the bot-
anists’ named genera and species. Of the 161 taxa recognised by the botanists, the community
monitors named 128 to genus level and 111 to species level (Table 2).

Community monitors grouped 27 species (262 trees), mainly of the genera Castanopsis,
Engelhardtia, and Schima, into 11 ethnotaxa. The 11 ethnotaxa referred one-to-one to 11 scien-
tific genera. The lumping of species that morphologically appear very similar makes up half
(52%, n = 31) the difference between the number of species identified by botanists and commu-
nity monitors. Community monitors split 2 species (7 trees) into four ethnospecies. In addi-
tion, the community monitors did not have a name for 58 trees (5%, n = 1071 trees) belonging
to 32 species.We found that 3 trees (0.3%, n = 1071 trees) seemed to be misidentified by the
community monitors based on the observation that the community monitors consistently
identified other trees of the same species as being of a different ethnospecies.

We investigated whether the trees that the community monitors did not have a name for
shared any common characteristics that might make them difficult or irrelevant for them to
identify. We examined the composition of the unnamed trees against six criteria: family, wood
density, size, habitat (primary and secondary forest), abundance, and usefulness for the com-
munity members as source of timber, fruits and other products.

The 58 unidentified trees belonged to what the botanists identified as 25 genera of 18 fami-
lies. Five families represented 57% of the unidentified trees (Magnoliaceae, Meliaceae, Myristi-
caceae, Rubiaceae, and Rutaceae). Forty-five (78%, n = 58) of the trees were rare, i.e. only 1–3
individuals were encountered in the plot network. Thirty-four trees (59%, n = 58) were small
(DBH<20 cm). Thirty-six trees (62%, n = 58) were classified as light wood by community
monitors using a scale from one to three. Forty-one (71%, n = 58) of the unidentified trees
were found in the primary forest on steep slopes (>45 degrees), 22% in the disturbed forest
closer to the village, and 7% in the ancient tea plantations in the vicinity of the village. Twenty-
two trees (37%, n = 58) were useful for timber. None of the unidentified trees (0%, n = 58) had
edible fruits. Thirteen (22%, n = 58) did not have any known uses (Table 3 and S2 File).

Community monitors had between 2 and 4 vernacular names for 29 species (18%, n = 161
taxa) recognised by the botanists (S1 File). For example, Colona floribunda is named pao huo
sheng when using its fibres to make fires and fan peng shu when using its hardy and non-

Table 2. Comparison of the number of trees identified to genus or species level by botanists and by

community monitors, and the number of genera and species that the identified trees belonged to, in

montane forest in Yunnan, China (n = 1071 trees). Numbers for community monitors are calculated using

only those with a one-to-one correspondence to scientific taxa.

Number identified Botanists Community monitors

Trees to genus level 1052 1013

Trees to species level 1037 800

Genera 149 128

Species 142 111

doi:10.1371/journal.pone.0152061.t002
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perishable timber to construct outdoor kitchens. Some species also had one local name for their
use and another for a conspicuous characteristic. For example, Ficus auriculata is named both
after its edible fruit and its conspicuous ear-shaped leaves and Engelhardtia spicata is named
both for its soft and easily cut wood and for its bark, which resembles the flab around the waist of
a fat woman. Toona ciliata, a luxurywood, has three local names; a traditional local name, a local
name adopted from the Flora of China and a local name referring to the quality of the timber. If
local synonyms, as in the examples above, were used consistently (n> 2 times) for the same sci-
entific species, we considered the synonyms useful in identification.

Costs of Tree Identification

Finally, we estimated the costs of tree identifications (Table 4). The costs of the plot survey
were 4.5 USD/ha for botanists and 1.3 USD/ha for community monitors. Salary and domestic

Table 3. Characteristics of trees unidentified by community monitors compared to total number of trees in montane forests in Yunnan, China. *
Light wood was classified by community monitors on a scale from 1 to 3 (low to high wood density).

Criteria Characteristic Proportion of unidentified trees

(n = 58 trees)

Proportion of all trees

(n = 1071 trees)

Taxon Magnoliaceae, Meliaceae, Myristicaceae,

Rubiaceae, and Rutaceae

57% 7%

Wood density Light wood (1 of 3)* 62% 34%

Size Small size DBH 10–20 cm 59% 47%

Habitat Primary forest sensu Corlett [68] 71% 53%

Abundance Rare (1–3 trees in the plot network of 60

vegetation plots)

78% 15%

Usefulness to the communities

sensu [66,67]

Useful for timber 37% 30%

Usefulness to the communities

sensu [66,67]

Fruit trees 0% 9%

Usefulness to the communities

sensu [66,67]

Other uses 22% 49%

doi:10.1371/journal.pone.0152061.t003

Table 4. Costs of tree species identification in the plot network by professional botanists and community monitors in montane forest in Yunnan,

China (in USD). * Two villagers acted as guides and assistants during botanists’ tree identification.

Botanists Community monitors

Number of plots surveyed 60 60

Area surveyed (ha) 761 761

Transport incl. domestic flight (USD) 533 0

Accommodation and food (outside field site) (USD) 72 0

Accommodation and food (in field site) (USD) 264 0

Salaries professional botanists (USD) 2000 0

Salaries community monitors (USD) 528* 870

Equipment (USD) 56 56

Courier of field forms (from village to the intermediate organisation) (USD) n.a. 50

Total cost (USD) 3453 976

Cost/plot (USD) 58 16

Cost/ha (USD) 4.5 1.3

Salaries (proportion of total cost) 73% 89%

Logistics and equipment (proportion of total cost) 27% 11%

Expenses disbursed at village level (proportion of total cost) 23% 89%

doi:10.1371/journal.pone.0152061.t004
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travel were the main expenses in the botanist-executed plot survey. The community monitors
all lived in an adjacent village. Salaries paid to community monitors were higher than the daily
rates in the rubber plantations due to the strenuous work on the slopes. Botanists and commu-
nity monitors both spent 7 days visiting all plots. The cost of equipment was minimal and con-
stituted spray paint for marking the plots, a pair of clippers to collect specimens and cardboard
and newspapers for the plant press. The relative amount of expenses disbursed at village level
was 23% for the botanist-led survey and 89% for the community-led survey (S3 File).

Discussion

Our results suggest that local experts from among the Yi people can reliably identify tree spe-
cies in Yunnan’s forests without having access to identification guides and herbaria.Moreover,
these local experts are able to collect large volumes of tree diversity data at relatively low cost.
The fact that the local experts’ and trained botanists’ results matched cannot be a result of the
pre-study training exercise because this focused only on plot establishment and tree girth
measurements.

How representative are our findings?We looked at the ability of experiencedYi community
members to match botanists’ identifications of tree species in one area at one time. Our results
are similar to field investigations in Xishuangbanna, China, and Ecuador and Brazil [14,15,63],
but contrast with results from Indonesia where plant names provided by local informants, who
had their experience from timber companies, could not be equated to particular taxa [12,64].
Not all local monitors are thus able to handle this task [69]. Unfortunately, few publications on
the topic describe how the community monitors were chosen (Table 1). Local knowledgemay
vary with age, proximity to the resource and experience [70]. In the present study, the commu-
nity monitors were carefully selected by representatives of the local community, based on their
interest in and experience of forest resources. Moreover, the taxonomic identifications in our
study were made by the late J.F. Maxwell, who was acknowledged as the most skilled field bota-
nist in Indochina [71]. Further studies are needed to examine the replicability of our findings
among carefully selected community member experts and botanists in other areas.

The tree taxa that were not identified by the community monitors differed from the major-
ity of trees in that they were mainly light-wood, low-density taxa of primary forest, of limited
use-value to the local communities. These findings concur with previous studies which demon-
strate that community member assessments may be suitable for monitoring organisms or phe-
nomena that are meaningful to community members e.g. as source of food or income or with
cultural or spiritual value [12,16,34]. If the aim is to monitor attributes that are not relevant
from a local perspective then local community members’ assessments may not be suitable [72].

While studies on the local uses of plants are numerous, in-depth and well-documented stud-
ies on the principles underlying folk biological taxonomy and nomenclature in non-Western
societies are still lacking. This lack of understanding of the conceptual foundations of ‘ethnosci-
ence’ (sensuUNESCO, [73]) as practised by non-Western people may partly explain the few
attempts to bring indigenous and local knowledge systems into the science-policy interface [56,
74]. Linguistic and cultural barriers continue to hamper such efforts [34,40].

Attempts have beenmade to elaborate standards for monitoring biodiversity in relation to
REDD+ [21,23,75]. Yet few REDD+ programs include community-level monitoring of biodi-
versity [47].

Accuracy is essential when forest carbon stocks are measured in order to track emissions
from deforestation. Most forest carbon stock monitoring in REDD+ programs is undertaken
by national consultants and foreign experts using remote sensing [76]. There may, however, be
markedly divergent estimates of forest carbon density whenmeasured from ground plots and
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satellites [77]. Variations in biodiversity can matter greatly when determining carbon stocks
but neither wood density nor species assemblages can be mapped from space. Our findings
suggest that community monitors may be important partners not only in terms of measuring
stem diameters but also identifying tree species (at least to genus level), thus enabling stems to
be matched to wood density information. Community monitors’ tree identifications can thus
complement, and add value to, remote sensing.

In REDD+ pilot schemes where community members have been involved in monitoring
forest biomass, their role has been largely limited to data collection [47,50,52,53,69,76]. In
every case, an intermediate organisation has helped establish the plot network and interpret
the biomass data. Since we found a high degree of one-to-one correspondence between the ver-
nacular names and the botanists’ named taxa, an intermediate organisation could also translate
the local experts’ tree data into Latin names, thereby connecting the vernacular names to the
current scientific knowledge of each taxon.

A key debate surrounding the development of REDD+ relates to costs [51,76,78]. Although
opportunity costs are generally considered the largest cost component of REDD+, monitoring
may also form a significant component of the total project costs [78]. Our results suggest that
sustaining a network of field plots is 70% cheaper (1.3 USD/ha/year) when tree diversity data
are collected by community experts instead of botanists (4.5 USD/ha/year). Moreover, our
findings suggest that community monitoring of canopy trees in vegetation plots resulted in
89% of all expenditure being disbursed at community level as opposed to 23% when the moni-
toring was led by professional scientists.

Monitoring costs at six Peruvian REDD+ sites ranged from 0.2–4.0 USD/ha/year [78]. The
most important factors determining costs per hectare are: i) the size of area to be monitored
[50,69,76], ii) the desired level of accuracy [78], and iii) the salary and time taken ([50], this
study). The monitoring cost per ha decreases as the size of the forest area increases. The start-
up costs of community monitoring may be high but, with time, the community monitors’ skills
improve and community monitoring becomes a cost-effective alternative to professional forest
monitoring [50]. In addition, past works suggest that community involvement in monitoring
enhances feelings of ownership and improves governance while building local capacity [79–
80].

There are challenges to using tree data from permanent vegetation plots to provide input to
forest management. Permanent plots may be treated differently from the rest of the forest.
Over time, the tree composition in the plots may therefore no longer be representative of the
forest area. Moreover, if pressures on the forest are high, the frequency of data collectionmay
not match the speed with which the forest is undergoing transformation. Monitoring of tree
diversity in REDD+ programs therefore cannot stand alone. Monitoring the status of threat-
ened species, potential threats and changes in the use of the forest and its resources, may also
be necessary [81]. Participatory REDD+ programs will require complementary participatory
biodiversity monitoring tools that can quickly provide reliable information with which to guide
action, at a low cost. One such approach is that of focus group discussions with knowledgeable
local community members on the status of particular natural resources and species of signifi-
cance due to their role, value or conservation status [82].

There was no conflict over the forest and its resources in this study. If community-based
biodiversity monitoring is to become a key element in the monitoring of participatory REDD
+ programs, periodic triangulation of the monitoring results will be required, although this is
no different from any well-designednatural resource management initiative, whether the mon-
itoring is implemented by communities, the government or the private sector [69]. To help
practitioners choose suitable approaches for biomass and biodiversity monitoring in REDD
+ programs, we have developed a decision tree (Fig 1).
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There are major international efforts underway by botanists to inventory tropical forest
trees [32,83,84]. Local involvement is also relevant in this context. Initial reliance on local
nomenclature for documenting tree richness should be augmented with the positive identifica-
tion of voucher specimens [12,34,64]. It is an arduous task to collect specimens due to the
infrequent flowering of tropical plants. A long-term collection of fertile material, when avail-
able (month by month), would benefit hugely from the involvement of local experts [33,36,85].

In conclusion, we have shown that if community members with significant knowledge of
forest trees are already assessing the biomass in a network of vegetation plots as part of Partici-
patory Measurement, Reporting and Verification for REDD+ programs [48,76], then minimal
further effort is required for them to collect data on the diversity of trees in the same plots.
Such an approach could generate large volumes of high-quality tree diversity data at a relatively
low cost.
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